SUBER model

The new version of the SUBER model - predicting multi products from the cork oak ecosystem

SUBER model - modules

\rightarrow Estimation of site productivity
\rightarrow Model initialization
in which the model simulates the variables that are not available from forest inventory
\rightarrow Simulation of the growth of each tree (individual tree model)
\rightarrow Simulation of cork parameters
cork growth, evolution of cork thickness, cork weight prediction, cork quality
\rightarrow Simulation of silvicultural practices
Thinning (uniform system, selection system)
Regeneration
\rightarrow Non-cork products and services

Structure of the model

Stages of tree development

$$
\mathrm{h}=3.00 \mathrm{~m}
$$

Regeneration Juvenile

Intermediate
 5. . a

SUBER model - modules

\rightarrow Modules:

\checkmark Prediction of site productivity

Prediction of site productivity

\rightarrow The development of this module was based on several plots established in juvenile stands (age known) representative of the cork oak stands in Portugal (contrasting climate and soil)
\rightarrow Each site was object of a detailed characterization of the soil, including the study of the whole profile
\rightarrow Climate was characterized by the nearest weather station (IM) and by available soil digital information
\rightarrow The site index curves for cork oak developed for Spain Mariola Gonzaléz - were used to estimate site index (S) for each plot
\rightarrow The relationship between S and climate and soil characteristics was then modeled (reduced model and full model)

Prediction of site productivity

Prediction of site productivity

Prediction of site productivity

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Growth model for trees in the regeneration stage

Growth of trees in the regeneration stage

\rightarrow The growth model for trees in the regeneration stage was based on data from provenance and regeneration trails (M. H. Almeida)
\checkmark Dominant height growth is modeled with the Spanish site index curves
\checkmark Mean and minimum tree heights are predicted from dominant height
\checkmark Height distribution is modeled from those variables
\checkmark Each tree is given a height according to the height distribution

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Growth model for trees in the juvenile stage
\checkmark Transition between the regeneration and juvenile stages
\checkmark Growth model for the juvenile stage

Transition regeneration \rightarrow juvenile

\rightarrow The transition of a tree from the regeneration to the juvenile stage was modelled with data from a large set of plots established in juvenile stands
\checkmark When a tree attains a height $=3 \mathrm{~m}$, it comes to the juvenile stage and its diameter is predicted (with some random effect added):
$d=-8.16726+4.52004 h+0.02467 \mathrm{~N}-0.00653 \mathrm{~h} N+0.33615 \mathrm{~h}_{\text {mean }}$
\checkmark From then on tree dbh growth is modeled with an equation specifically developed for this stage:

$$
\mathrm{id}=\frac{1}{3}(0.7356+0.0178 \mathrm{~d}-0.0475 \mathrm{G}+0.0763 \mathrm{Si})
$$

\checkmark Tree height and crown diameter are predicted with the same functions used for the adult stage, using du estimated from

$$
d u=-1.5276+0.8321 d
$$

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Module to simulate growth of trees in the juvenile stage
\checkmark Transition between the regeneration and juvenile stages
\checkmark Growth model for trees in the juvenile stage
\checkmark Transition between the juvenile and adult stages

Transition juvenile \rightarrow adult

\rightarrow The transition of a tree from the juvenile to the adult stage includes three sub-models:
\checkmark Decision about debarking (for even-aged stands, when p\% of the trees have a d>22.28 cm)
\checkmark Prediction of diameter under cork

$$
\mathrm{du}=-1.5276+0.8321 \mathrm{~d}
$$

\checkmark Simulation of height of branching
\checkmark Simulation of the number of branches that will be debarked
Monte-Carlo simulation using observed distributions by NUTII or a user defined distribution

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Module to simulate growth of trees in the juvenile stage
\checkmark Transition between the regeneration and juvenile stages
\checkmark Growth model for trees in the juvenile stage
\checkmark Transition between the juvenile and adult stages
\checkmark Growth model for trees in the adult stage

SUBER - tree growth at dbh

data from stem analysis

Growth of trees in the adult stage

\rightarrow Diameter under cork growth model for dominant trees was developed using the Richards function formulated as an ageindependent difference equation

$$
d_{t+a}=200\left(1-e^{\left.-(-0.00173+0.000383 \mathrm{Si}) \mathrm{a}\left(1-\left(\frac{d_{\mathrm{t}}}{200}\right)^{1.0819}\right)\right)^{\frac{1}{1.0819}}}\right.
$$

\checkmark If stand age is known, S can be directly estimated, if not it can be predicted from soil and climate characteristics
\checkmark Genetic variability is simulated through the k parameter
\checkmark Tree height and crown diameter are also predicted with prediction functions common to juvenile and mature stages

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Module to simulate growth of trees in the juvenile stage
\checkmark Transition between the regeneration and juvenile stages
\checkmark Growth model for trees in the juvenile stage
\checkmark Transition between the juvenile and adult stages
\checkmark Growth model for trees in the adult stage
\checkmark Prediction of cork weight as a function of cork age

Modelling options - cork growth

Example with a cork with 9 years

Modelling options - cork growth

\rightarrow Cork growth sub-models:

\checkmark juvenile stage

- $1^{\text {st }}$ cork thickness distribution

\checkmark intermediate and mature stages
- cork growth prediction (complete years)
- total cork thickness prediction (as a function of the thickness of complete years)
- evolution of cork growth index through successive cork extractions
- modification of cork growth index as a consequence of cork extraction intensity??? -> next topic!

SUBER - cork growth

Data from cork ring measurements in cork samples with ages ranging from 7 to 16 years

SUBER - cork growth

Data on the relationship between total cork thickness and thickness of complete rings

—cgi=15-cgi=25-cgi=35-cgi=45

$$
\begin{array}{|l|l|l|l|}
\hline \triangle 9 " & \triangle \\
\hline
\end{array}
$$

Evolution of cgi in sucessive debarkings

Prediction of cork weight using cork age

\rightarrow Equation to predict cork weight for corks with 9 years
\rightarrow Equation to predict \% cork back weight at 9 years of age (cbp ${ }_{9}$)
\rightarrow Estimate the biomass of cork tissue free from the cork back

$$
\mathrm{wcm}_{9-\mathrm{b}}=\mathrm{wcm}_{9}\left(1-\frac{\mathrm{cbp}_{9}}{100}\right)=\mathrm{wcm}_{9}-\mathrm{wcm}_{9} \frac{\mathrm{cbp}_{9}}{100}
$$

biomass of cork back
\Rightarrow Estimate the cork biomass for t years of growth

$$
\mathrm{wcm}_{\mathrm{t}}=\underbrace{\mathrm{wcm}_{9_{-} \mathrm{b}} \frac{\mathrm{ctab}_{\mathrm{t}}}{\mathrm{ctab}}}_{\text {biomass of cork tissue }}+\underbrace{\mathrm{wcm}}_{\text {biomass of corkback }} \frac{\mathrm{cbp}_{9}}{100}
$$

Percentage of cork back (in weight)

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Module to simulate growth of trees in the juvenile stage
\checkmark Transition between the regeneration and juvenile stages
\checkmark Growth model for trees in the juvenile stage
\checkmark Transition between the juvenile and adult stages
\checkmark Growth model for trees in the adult stage
\checkmark Prediction of cork weight as a function of cork age
\checkmark Simulation of thinnings without using competition indices

Simulation of thinnings without Cl

\rightarrow The SUBER 3 model was used to simulate the development of several plots with alternative thinning strategies
\rightarrow These simulated data were used to develop a model that predicts the probability of a tree being thinned (logistic regression):

$$
\begin{aligned}
& \mathrm{p}(\text { thinned })=1-\frac{\mathrm{e}^{\pi}}{1+\mathrm{e}^{\pi}} \\
& \pi=-3.9800+0.00776 \mathrm{du}+6.8988 \text { Rdm }-12.6742 \text { RCE }
\end{aligned}
$$

\rightarrow Trees are "thinned" with Monte-Carlo simulation
\checkmark Uniform system: all trees at the same time
\checkmark Selection system: by diameter class, towards a target distribution

SUBER model - modules

\rightarrow Modules:

\checkmark Methodology to estimate site productivity
\checkmark Module to simulate growth of trees in the juvenile stage
\checkmark Transition between the regeneration and juvenile stages
\checkmark Growth model for trees in the juvenile stage
\checkmark Transition between the juvenile and adult stages
\checkmark Growth model for trees in the adult stage
\checkmark Prediction of cork weight as a function of cork age
\checkmark Simulation of thinnings without using competition indices
\checkmark Non-cork products and services

Non-cork products and services

\rightarrow Products considered:
\checkmark Wood from thinnings and harvests (under implementation)
\checkmark Total biomass by tree components
\checkmark Carbon (total and by tree components)

Just a few words on...

\rightarrow sIMfLOR forest simulators platform

\checkmark www.isa.ulisboa.pt/cef/forchange/fctools

Just a few words on...

\rightarrow sIMfLOR forest simulators platform

\checkmark www.isa.ulisboa.pt/cef/forchange/fctools

Ano

SUBER model - application

THE PROBLEM

\rightarrow During the last decades cork oak stands have been used as a silvopastoral system with sheep grazing underneath the trees
\rightarrow Some landowners think that grazing is no more profitable, so they are considering several alternatives:
\checkmark Increase stand density at least for 50\% crown cover (OPTION 1)
\checkmark Maintain a lower stand density (40\%) and move to a selection system (OPTION 2)
\checkmark Maintain a lower stand density (40\%) combined with read deer to increase the income (OPTION 3)

SUBER model - application

AN EXAMPLE

\checkmark Application to a stand with 252 ha
\checkmark Stand density: 136 ha $^{-1}$
\checkmark Basal area: $7.76 \mathrm{~m}^{2} \mathrm{ha}^{-1}$ (under bark)
\checkmark Quadratic mean dbh: 28 cm
\checkmark Crown cover: 40\%
\rightarrow It is a relatively young stand, "more or less" even-aged
\rightarrow Cork rotation is 9 years, with two extractions in a 9 years period (two cork ages)

Present status of the stand

Diameter class (cm)

OPTION 1

OPTION 2

Net present value ha-1 $=13539$

Net present value ha ${ }^{-1}$ 13975.1

OPTION 3

MVigin nawive

Net present value $\mathrm{ha}^{-1}=14174$

SUBER model - application

CONSEQUENCES

\rightarrow After this first application the landowners put other questions:
\checkmark Is 9 years the best cork extraction rotation?
\checkmark Is it wise to concentrate cork extraction on every $\mathrm{i}^{\text {th }}$ year?
\checkmark Should cork extraction intensity be increased from now or from the next debarking?
\rightarrow Again, the SUBER model was used to give answer to these questions

$$
-50 \%-40 \% \quad * \text { buisiness as usual }
$$

