SUBER model

The new version of the SUBER model - predicting multi products from the cork oak ecosystem

- → Estimation of site productivity
- Model initialization
 - in which the model simulates the variables that are not available from forest inventory
- Simulation of the growth of each tree (individual tree model)
- Simulation of cork parameters
 - cork growth, evolution of cork thickness, cork weight prediction, cork quality
- Simulation of silvicultural practices
 - Thinning (uniform system, selection system)
 - Regeneration
- Non-cork products and services

Structure of the model

Stages of tree development

→ Modules:

- The development of this module was based on several plots established in juvenile stands (age known) representative of the cork oak stands in Portugal (contrasting climate and soil)
- Each site was object of a detailed characterization of the soil, including the study of the whole profile
- Climate was characterized by the nearest weather station (IM) and by available soil digital information
- The site index curves for cork oak developed for Spain -Mariola Gonzaléz - were used to estimate site index (S) for each plot
- The relationship between S and climate and soil characteristics was then modeled (reduced model and full model)

Presently working on the prediction and mapping of cork growth index distribution

→ Modules:

- Methodology to estimate site productivity
- Growth model for trees in the regeneration stage

Growth of trees in the regeneration stage

- The growth model for trees in the regeneration stage was based on data from provenance and regeneration trails (M. H. Almeida)
 - Dominant height growth is modeled with the Spanish site index curves
 - Mean and minimum tree heights are predicted from dominant height
 - Height distribution is modeled from those variables
 - Each tree is given a height according to the height distribution

→ Modules:

- Methodology to estimate site productivity
- Growth model for trees in the juvenile stage
- Transition between the regeneration and juvenile stages
- Growth model for the juvenile stage

Transition regeneration \rightarrow juvenile

- The transition of a tree from the regeneration to the juvenile stage was modelled with data from a large set of plots established in juvenile stands
 - When a tree attains a height = 3 m, it comes to the juvenile stage and its diameter is predicted (with some random effect added):

 $d = -8.16726 + 4.52004 \ h + 0.02467 \ N - 0.00653 \ h \ N + 0.33615 \ h_{mean}$

From then on tree dbh growth is modeled with an equation specifically developed for this stage:

$$id = \frac{1}{3} (0.7356 + 0.0178 d - 0.0475 G + 0.0763 Si)$$

 Tree height and crown diameter are predicted with the same functions used for the adult stage, using du estimated from du=-1.5276+0.8321 d

→ Modules:

- Methodology to estimate site productivity
- Module to simulate growth of trees in the juvenile stage
- Transition between the regeneration and juvenile stages
- Growth model for trees in the juvenile stage
- Transition between the juvenile and adult stages

Transition juvenile \rightarrow adult

- The transition of a tree from the juvenile to the adult stage includes three sub-models:
 - Decision about debarking (for even-aged stands, when p% of the trees have a d>22.28 cm)
 - Prediction of diameter under cork
 - $du = -1.5276 + 0.8321 \ d$
 - Simulation of height of branching
 - Simulation of the number of branches that will be debarked
 Monte-Carlo simulation using observed distributions by NUTII or a user defined distribution

→ Modules:

- Methodology to estimate site productivity
- Module to simulate growth of trees in the juvenile stage
- Transition between the regeneration and juvenile stages
- Growth model for trees in the juvenile stage
- Transition between the juvenile and adult stages
- Growth model for trees in the adult stage

SUBER - tree growth at dbh

data from stem analysis

Growth of trees in the adult stage

Diameter under cork growth model for dominant trees was developed using the Richards function formulated as an ageindependent difference equation

$$d_{t+a} = 200 \left(1 - e^{-\left(-0.00173 + 0.000383 \text{ Si}\right) a} \left(1 - \left(\frac{d_t}{200}\right)^{1.0819} \right) \right)^{\frac{1}{1.0819}}$$

- If stand age is known, S can be directly estimated, if not it can be predicted from soil and climate characteristics
- Genetic variability is simulated through the k parameter
- Tree height and crown diameter are also predicted with prediction functions common to juvenile and mature stages

→ Modules:

- Methodology to estimate site productivity
- Module to simulate growth of trees in the juvenile stage
- Transition between the regeneration and juvenile stages
- Growth model for trees in the juvenile stage
- Transition between the juvenile and adult stages
- Growth model for trees in the adult stage
- Prediction of cork weight as a function of cork age

Modelling options - cork growth

Example with a cork with 9 years

Modelling options - cork growth

Cork growth sub-models:

- ✓ juvenile stage
 - 1st cork thickness distribution

- ✓ intermediate and mature stages
 - cork growth prediction (complete years)
 - total cork thickness prediction
 - (as a function of the thickness of complete years)
 - evolution of cork growth index through successive cork extractions
 - modification of cork growth index as a consequence of cork extraction intensity??? -> next topic!

SUBER - cork growth

Data from cork ring measurements in cork samples with ages ranging from 7 to 16 years

SUBER - cork growth

Data on the relationship between total cork thickness and thickness of complete rings

Evolution of cgi in sucessive debarkings

Prediction of cork weight using cork age

- Equation to predict cork weight for corks with 9 years
- \rightarrow Equation to predict % cork back weight at 9 years of age (cbp₉)
- Estimate the biomass of cork tissue free from the cork back

$$wcm_{9_b} = wcm_9 \left(1 - \frac{cbp_9}{100}\right) = wcm_9 - wcm_9 \frac{cbp_9}{100}$$

Estimate the cork biomass for t years of growth

$$wcm_{t} = wcm_{9_{b}} \frac{ctab_{t}}{ctab_{9}} + wcm_{9} \frac{cbp_{9}}{100}$$

Percentage of cork back (in weight)

→ Modules:

- Methodology to estimate site productivity
- Module to simulate growth of trees in the juvenile stage
- Transition between the regeneration and juvenile stages
- Growth model for trees in the juvenile stage
- Transition between the juvenile and adult stages
- Growth model for trees in the adult stage
- Prediction of cork weight as a function of cork age
- Simulation of thinnings without using competition indices

Simulation of thinnings without CI

- The SUBER 3 model was used to simulate the development of several plots with alternative thinning strategies
- These simulated data were used to develop a model that predicts the probability of a tree being thinned (logistic regression):

$$p(thinned) = 1 - \frac{e^{\pi}}{1 + e^{\pi}}$$

 $\pi = -3.9800 + 0.00776 \ du + 6.8988 \ Rdm - 12.6742 \ RCE$

Trees are "thinned" with Monte-Carlo simulation

- Uniform system: all trees at the same time
- ✓ Selection system: by diameter class, towards a target distribution

→ Modules:

- Methodology to estimate site productivity
- Module to simulate growth of trees in the juvenile stage
- Transition between the regeneration and juvenile stages
- Growth model for trees in the juvenile stage
- Transition between the juvenile and adult stages
- Growth model for trees in the adult stage
- Prediction of cork weight as a function of cork age
- Simulation of thinnings without using competition indices
- Non-cork products and services

Non-cork products and services

Products considered:

- Wood from thinnings and harvests (under implementation)
- Total biomass by tree components
- Carbon (total and by tree components)

Just a few words on...

→ sIMfLOR forest simulators platform

www.isa.ulisboa.pt/cef/forchange/fctools

Just a few words on...

→ sIMfLOR forest simulators platform

www.isa.ulisboa.pt/cef/forchange/fctools

	2	2001	Perci	-	1760	Crea.	Distant.	1200	- 40										8 -	1
			1992	1998 PC	100.0	144														
	3 2 0		Californi,	- 11	- A .	3		8-1	2me	led.	terest						* 1		7 A)	
			11 /	U = 112 =	Dr. A	a 📼		E (E	-	a & Center	. Diff a lo	1 120	- Ces	A111-4	Parent Call	2115	DALL PLUT	Entr 1	10 310	
		met Reinter			-	915									C BALLY & TAYLO				NUT THEFT	
								41311	et.						lyka –		0:b	Min		
	65		(a	<i>A</i> 0																
	A		C.	D				5	н	1		×	1			0		Q R	5	
	Cod_Par	12,000	oud_L	9	112	de	0.2	s (211	du Im	h	ts.	hdr	hat	nbnu1		oid with	And desclopice	cellore	0.
	6000001	1		1 (58	•						2	0	0	8	2 1995 90		3
	6001006			1 12.2		•	٥	- 9						P		0	•	0.50		•
	00000005	11		<u></u>			328	- Q							0	U.	1	2 2002 30		e
	6003006	12		1 0		0	38.2	0						.4	0	0	2	2 1991 55		1
	6003006	13		1 103			35.2	•							0	0	3	1005 Se		•
	6003005	24		1 14.8		Ø	v	•						.4	0	U	1	2 1005 SD		2
	6003006	15		1 0			37.7	0	0					3	0	0	2	2 1995 58		8
	0000000	10		1 0			27.7	•							a	0	2	2 1995 Sp		•
	6000000	1/		1 0			255	•						1	0	U.	2	2 1960 50		2
	6001004	18					an 8	0						.8.			2	1995.55		٩.,
1	60000008	12		1 0			12.1	•	0						0		2	2 1995 So		•
	0000000	2		1 0		Ø	31							2	0	0	2	2 1995 Sh		£
																				٩
	0000000	21		1 0			13.6	•	0								•	0 56	-	•
	60000005	22		1 44.1		0	0			-				.1		0	2	2 1995 90		
	0001000	23					31.0	2								0	,	0014 58		•
	60000005	- 24		1 0			31.6										1	2 1001 50		
	60000005			1 0			48.6	-		- 1					0	0	2	2 1998 SD		-
	6003005			1 223			21.3	- 2						1	-					
				1 123			21.5	- 2						2		0		2 1255 50		-
	6001001			1 0			25.1	- 2							-		2	2 1991 50		<u>-</u>
	0000000						10.	- 1						2		÷	1	100.00		
	6001001					0	30.5	- 2						7	× ·	0		2 1995 50		5
	0003000			1 10		0	0	-1						1				2 1996 50		-
	0000000	22				2	725	1								2	1	1005 30		
		dos arvor		1 (1) 10 (12)	1	×		•		_	- 10.	-			*	*	-		-	
	de la ca	ALC: NOT	A BUAST	•m9./														() and ()		1911

Manual Misto Mecánico Infrae	Infraestrutura		aho	Maquinaria		Taxa de Actualização	
Tipo de operação	Mn	Max	Med	unidade	-	0 (M)	
						Carregar ficheiro defaul	
						Carregar ficheiro existent	
					-		

🕐 Simulador do Povoamento para Sobreiro			? ×				
Povoamento Inventário Distribuição Ajuda							
		Estrutura de Povoamento					
Nome do Local Exemplo		Povoamento Regular - 1	Andar 🔹				
Concelho CORUCHE -		Número de Andares	Idade anos)				
		1	43				
Ficheiros Input	0	Caracterização do Solo					
Seleccionar Importado		Origem da informação	T				
Dados de Silvicultura (*.csv)		Tipo de solo (FAO)	· ·				
Silvicultura_50anos_Pov_Exist_Rot9Anos_i Dados Económicos (*x/s *x/sx)		Uso do Solo Florestal	T				
dados_economicos xls		Litologia	0 - desconhecid V				
Dados das Árvores (*xls *xlsx)		Espessura Útil (cm)	0				
Dados_arvore_inventario.xlsx -							
Seleccionar folha Excel Dados_arvore_i 💌		Espessura do horizonte	0				
			Sequinte >				
			ocgunico				
Gravar							

SUBER model - application

THE PROBLEM

- During the last decades cork oak stands have been used as a silvopastoral system with sheep grazing underneath the trees
- Some landowners think that grazing is no more profitable, so they are considering several alternatives:
 - Increase stand density at least for 50% crown cover (OPTION 1)
 - Maintain a lower stand density (40%) and move to a selection system (OPTION 2)
 - Maintain a lower stand density (40%) combined with read deer to increase the income (OPTION 3)

SUBER model - application

AN EXAMPLE

- Application to a stand with 252 ha
- ✓ Stand density: 136 ha⁻¹
- Basal area: 7.76 m² ha⁻¹ (under bark)
- Quadratic mean dbh: 28 cm
- Crown cover: 40%
- → It is a relatively young stand, "more or less" even-aged
- Cork rotation is 9 years, with two extractions in a 9 years period (two cork ages)

SUBER model - application

CONSEQUENCES

→ After this first application the landowners put other questions:

- Is 9 years the best cork extraction rotation?
- Is it wise to concentrate cork extraction on every ith year?
- Should cork extraction intensity be increased from now or from the next debarking?

Again, the SUBER model was used to give answer to these questions

The END